

Power Tower R&D

Hugh Reilly
Sandia National Laboratories

CSP Peer Review November 7, 2001

Outline of Presentation

From an R&D perspective:

...Where We've Been

Where We're at Now

Where We're Going...

Solar One

- 10MWe power tower demonstration plant
- Water/steam as heat transfer fluid
- Successes
 - Power tower proof-of-concept
 - 3-year power production phase
 - Utility-scale electricity
 generation—over 42,000 MWh

- Limitations due to water/steam
 - Inefficient storage
 - Receiver must be high-pressure gas heat exchanger
 High pressure→Thick-walled tubes→Low flux capability
 - Electricity generation directly coupled to solar energy collection (Clouds tripped turbine)

Molten Salt Advantages

- Efficient storage of thermal energy
 - High capacity factor
 - Dispatch electricity for utility peaks, maximizes value of electricity without use of fossil fuels
- Low-pressure heat exchanger Low pressure → Thin-walled tubes → high flux capability
- Extensive R&D by Industry and Sandia
 - Salt receivers
 - Pump & Valve Test
 - Material corrosion experiments Salt chemistry
- Molten-Salt Electric Experiment
- Salt Storage Experiment

Solar Two

- 10MWe demonstration of molten-salt power tower technology
- Nitrate salt as heat transfer and energy storage medium 60 wt% NaNO_{3/}40 wt% KNO₃ 3-hour storage
- Retrofit of Solar One

Solar Two Significance

- → Met objective of technology validation
- Receiver: Validated design, performance and operation of a large-scale molten-salt receiver system
- Storage: Demonstrated use of bulk quantities of molten-salt as heat transfer and thermal storage medium
 - Highly efficient: >97%
 - Inexpensive: ~\$10/kWh_t
 - Simple: Externally insulated, field-erected tanks
- Demonstrated Dispatchability
 Operated after dark, even around the clock
- Demonstrated performance of a new receiver panel New alloy, new panel design
- → Lessons learned being applied to next plants
- → Met all major goals, including:

"Stimulate interest in forming a commercial consortium"

Where We're at Now

Bringing molten-salt power towers to commercialization

- Integrating lessons learned into power tower design Examples (*More on this in next presentation*):
 - Reduce number of salt valves
 - Don't use ball valves for salt service
- Incorporating design enhancements Examples (*More on this in next presentation*):
 - Long-shafted hot and cold salt pumps
 - New receiver design
- Testing advanced components
 - Needs identified by industry requests/roadmap
 - Further reduce cost, improve reliability
 - These include:
 - New valve and instrument designs
 - Head-reducing downcomer
 - Heliostat components

Where We're At Now

Development of a Long-Shafted Salt Pump

- With Nagle Pumps, Inc. and Nexant
- Salt-cooled bearings
- Mounts directly above hot and cold salt storage tanks
- Eliminates 2 sumps, 6 large salt valves, heat trace, insulation
- Reduces plant O&M, increases reliability

Where We're At Now

Reducing Risk and Improving Technology

- Utilize unique molten-salt test facilities
 - Further tests on long-shafted pump
 - Advanced valve and instrument designs
- Heliostat component testing
 - Environmental chambers
 - Pull tests

Where We're At Now

Development of a Head-Reducing Downcomer

Downcomer w/ 13-Hole Orifice Plates

Where We're Going: A Roadmap

- Develop commercial molten-salt power tower design incorporating design enhancements
- Progression of plants based on price support and scale-up
 - → Solar Tres
 - →50 MWe plants in US and worldwide
 - → 100MWe commercial plants worldwide
- Develop next round of improvements and cost reductions

Summary

- We have fielded two successful 10MWe demonstration plants
- We have incorporated lessons learned
 Solar One→Solar Two→Solar Tres→Commercial design basis
- We are ready for a 3x scale-up (Solar Tres)
- Industry/labs working on first commercial plant
 - CRADA's
 - Testing at NSTTF
 - Labs participate in Solar Tres design, test, evaluation, operation

Molten-salt power towers emerge as viable sources of grid-scale electricity